Ir al contenido principal

Apoyo y Resistencia


Siguiendo con la visión de Charles Dow, recordemos que se definía a la tendencia como a una sucesión de picos y valles de la gráfica lineal de precios que se mueven en una determinada dirección, ascendente cuando los picos y valles son cada vez más altos y descendente cuando ocurre lo contrario.

Los valles son llamados “apoyos” y los picos “resistencia”.  Por ejemplo para una tendencia creciente podríamos tener el siguiente gráfico:



Y para una tendencia descendente:




La idea que el “apoyo” representa, es la de ser un nivel de precio inferior o punto del gráfico de precios, el cual se supone deviene de la psicología de los participantes en el mercado en ese momento, en donde el interés por comprar es lo suficientemente considerable como para vencer a la presión de venta.

En forma inversa, la “resistencia” es un nivel de precio superior o punto del gráfico de precios, en donde el interés por vender es lo suficientemente considerable como para vencer a la presión de compra.

Comentarios

Entradas populares de este blog

Introducción

S e ha elegido como nombre de este proyecto el acrónimo “NosTraderMus” puesto que conjuga en una palabra el nombre “Nostradamus” y la palabra “Trader” (Negociador, en idioma inglés, utilizado para designar a quienes operan en mercados financieros). Por un lado, el simple hecho de pronunciar el nombre de Nostradamus (Michel de Nôtre-Dame), al menos para quienes conocemos parte de su historia, nos transporta a un estado de sensación interna cargado de magia y misterio. Seguramente esto es así debido a que este personaje histórico, es considerado uno de los más renombrados autores de predicciones o profecías que no pocas personas aseguran haberse cumplido. En definitiva, para muchos, Nostradamus podía ver el futuro. Dado que el trading se basa también en la constante búsqueda de métodos y artificios mediante los cuales pueda predecirse los movimientos futuros de los activos financieros, resultó consecuente adoptar el nombre del personaje aludido con una pequeña modificación, la ...

Media Móvil Ponderada

Considere cuales datos tienen mayor relevancia si lo que se pretende es tener una perspectiva a futuro: ¿los más antiguos o los más recientes? Si bien para casos específicos los datos o información más antigua pudieran tener mayor relevancia que los más recientes, en la gran mayoría de los casos, podríamos decir de cualquier índole, los datos más recientes tienen mayor relevancia que los más antiguos. Esta naturaleza de importancia respecto de su actualidad de los datos puede ser tenida en cuenta también cuando se calcula la media de una serie de datos numéricos. ¿Cómo podemos hacer eso? Pues dando una ponderación o peso a cada dato siendo este peso directamente proporcional a su actualidad. Veamos. Tomemos los diez datos siguientes de un histórico de precios: Sesión (X) Cierre (Y) 0 84,83 -1 84,84 -2 84,81 -3 84,76 -4 84,86 -5 84,92 -6 84,98 ...

Media Móvil Simple (SMA)

En páginas anteriores hemos visto que en matemática y estadística, el valor promedio o media aritmética (o simplemente media) de un conjunto finito de números, es igual a la suma de todos esos números dividido entre la cantidad de sumandos. Además se establece que la idea que subyace en encontrar el promedio de un conjunto de números, es el de identificar el valor, el cual no necesariamente es la mitad de los valores dados, alrededor del cual se distribuyen los demás. Ahora bien, la Media Móvil (o en terminología inglesa: Moving Average “MA”) es el registro de cómo se ha movido o cambiado el valor de la media en el transcurso del tiempo. Veamos los siguientes datos históricos de precios: Sesión (X) Apertura Máximo Mínimo Cierre (Y) 0 84,85 84,90 84,82 84,83 -1 84,81 84,92 84,76 84,84 -2 84,76 84,81 84,74 84,81 -3 84,86 84,86 84,67 ...